The first confirmed microlensing event in a globular cluster

Pawel Pietrukowicz Warsaw University Observatory, Poland
&
D. Minniti, Ph. Jetzer, J. Alonso-Garcia, A. Udalski
The Paczyński's idea

Bohdan Paczyński (1940-2007)

Paczyński (1986) – microlensing by halo objects

Paczyński (1994) – microlensing in GCs
An episode in M22 in 2000

Probable lens:

M5 dwarf, $M = 0.14 \pm 0.10/0.02 \, M_{\odot}$

Pietrukowicz et al. (2005, Acta Astronomica, 55, 261)
An episode in M22 in 2000

JHKs combined image from VISTA Variables in the Via Lactea (VVV) survey
An episode in M22 in 2000

Probable lens:

M5 dwarf, $M = 0.14 \pm 0.10/-0.02 \, M_{\odot}$

Pietrukowicz et al. (2005, Acta Astronomica, 55, 261)
An episode in M22 in 2000

map from Churchwell et al. (2009)
Adaptive optics
VLT/NACO observations

Location: Cerro Paranal, Chile
Telescope: 8.2m UT4
Instrument: NAOS-CONICA
Mode: service
Date: 2011 July 17
Filter: K_s

V~14 mag star as the natural guide source
20 x 110 s exposures
FWHM = 0.11 arcsec
11 years after the event

Source-lens separation: 0.125"

Seeing: 0.7-1.0"

FWHM: 0.11"

Confirmation of the event: relative proper motion

M22-bulge relative pm from Chen et al. (2004)

11 years after the event

Source:
$K_s = 17.37\ \text{mag}$

Lens:
$K_s = 20.57\ \text{mag}$

Confirmation of the event: CMD

Geometry of the event

Lens:
\[d = 3.2 \pm 0.2 \text{ kpc} \]
\[M = 0.18 \pm 0.01 \text{ M}_{\odot} \]

Source:
\[d = 6.0 \pm 1.5 \text{ kpc} \]
\[M \sim 1 \text{ M}_{\odot} \]

models from Brocato et al. (1998)
Geometry of the event

Lens:
\[d = 3.2 \pm 0.2 \text{ kpc} \]
\[M = 0.18 \pm 0.01 \text{ Msun} \]

Source:
\[d = 6.0 \pm 1.5 \text{ kpc} \]
\[M \sim 1 \text{ Msun} \]
Confirmation of the event: OGLE-IV light curve

OGLE-IV – instrumentation

In operation since March 2010
1.3m Warsaw telescope at Las Campanas
32-chip mosaic camera
1.4 deg^2 field of view
Scale of 0.26 arcsec/pix
VI filters
Read-out time: 20 sec

http://ogle.astrouw.edu.pl
OGLE-IV – bulge coverage

Cadence (visits per night):
- Red: 10-30
- Yellow: 3-10
- Green: 1-3
- Blue: 0.5-1
- Cyan: < 0.5
- Transparent: occasionally

In 2011 bulge season:
- 1562 microlensing candidates
- 63 events with $t_E < 2$ days
- OGLE-IV covers 43 bulge GCs
OGLE-IV – disk coverage
OGLE-IV – bulge coverage

Cadence (visits per night):

Red: 10-30
Yellow: 3-10
Green: 1-3
Blue: 0.5-1
Cyan: < 0.5
Transparent: occasionally

In 2011 bulge season:

1562 microlensing candidates
63 events with $t_E < 2$ days

OGLE-IV covers 43 bulge GCs
OGLE-IV – likely events in bulge GCs

OGLE-2011-BLG-0123

I magnitude vs. HJD - 2450000

NGC 6522

OGLE-2011-BLG-1461

I magnitude vs. HJD - 2450000

NGC 6544
Summary

- For the first time from the ground we have resolved components of a microlensing event.

- For the first time we have confirmed that an object in a GC acted as a microlens.

- The detected microlens in M22 is a \(\sim 0.18 \, M_{\odot} \) dwarf.

- We show the capability of the microlensing technique in detection and mass measurement of objects in GCs.
Thank you!
Microlensing events in the fields of GCs

<table>
<thead>
<tr>
<th>Survey</th>
<th>Years</th>
<th>Total number of events</th>
<th>Events at (r < r_t)</th>
<th>Events at (r \leq) (r_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACHO</td>
<td>1992-1999</td>
<td>564</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>EROS-2</td>
<td>1996-2002</td>
<td>120</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MOA</td>
<td>2000-2010</td>
<td>2818</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>OGLE-I</td>
<td>1992-1995</td>
<td>20</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>OGLE-II</td>
<td>1998-2000</td>
<td>164</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OGLE-III</td>
<td>2001-2009</td>
<td>4057</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>OGLE-IV</td>
<td>2011</td>
<td>1562</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

None of the event detected so far was observed in the core of a cluster!
Two GCs in Baade's Window

NGC 6522

NGC 6528

16'}