
Chapter 2

Blind Signal Separation

Blind Signal Separation (BSS) is a now widely used technique for the identifi-

cation and separation of mixed signals. It is called blind because usually we don’t

have much information about the forms in which these signals are actually mixed,

although we usually might identify and interpret the different signals if they could

be separated.

In this chapter we present two techniques that will be used in the present work:

Principal Component Analysis, which is a way to decorrelate linearly a set of random

variables and Independent Component Analysis, which is based in the assumption

that the signals that where mixed are not only uncorrelated, but also independent.

As we will see, both techniques have a wide range of application in time-series data,

but the latter can be viewed as an extension of the former.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a classical multivariate analysis method

that has two basic ideas. The first one is to find a linear transformation V that

transform a given zero-mean N−dimensional random vector1 �X, which may have

correlated random variables, into a new N−dimensional random vector V �X = �Z

that has uncorrelated random variables. On the other hand, the second idea is

to maximize the variance of each linear transformation of the elements of �X, i.e.,

1This asumption is made in order to simplify the notation. However, in practice we can always
take a sample of this random vector and subtract the empirical mean in order to simplify the
problem.
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2.1. PRINCIPAL COMPONENT ANALYSIS

maximize the variance of each element of the random vector �Z, which are called the

principal components. As we will see, the linear transformation that projects the

random vector �X to an uncorrelated random vector �Z is not unique, and we’ll search

for the optimal one in the context of time series analysis.

2.1.1 A derivation of the principal components

The question now is: how do we find this transformation? The classic derivation

(Jolliffe, 2002) uses the fact that we want to first maximize the variance of each

linear combination of �X, i.e., maximize the variance of the principal components,

obtaining the desired transformation componentwise. The idea is that the desired

transformation matrix, V, contains the coefficients of these linear transformations.

Let’s denote the elements of this matrix by vi,j. Then, the i-th principal component

(the i-th element of the vector �Z) is given by

Zi = v1,iX1 + v2,iX2 + ...+ vN,iXN = �vTi
�X,

where the elements of the vectors �vi are the coefficients of the linear combination

of the elements of �X corresponding to this i-th principal component. Our first task

is to maximize the variance of the first principal component, E [Z2
1 ] = �vT1 ΣX�v1.

Note that, however, we need to constrain the values of the vectors �vi in order to

do this. The constraint that we’ll impose is �vTi �vi = 1. In summary, the problem

is stated as follows: maximize the function f(�v1) = �vT1 ΣX�v1 given the constraint

g(�v1) = �vTi �vi = 1. Using the method of Lagrange multipliers (and remembering that

the covariance matrix is symmetric), we have

�∇1f = 2ΣX�v1 = λ1
�∇1g = 2λ�v1 =⇒ ΣX�v1 = λ�v1,

where the operator �∇1 represents the gradient with respect to the elements of �v1.

Here we see that �v1 is an eigenvector of the covariance matrix of �X, where the

corresponding eigenvalue is the Lagrange multiplier, λ1. To obtain the second prin-

cipal component, we repeat the maximization problem that we made for the first

one but now we add one more constraint: we want Z1 and Z2 to be uncorrelated,

i.e. h(�v1,�v2) = Cov(Z1, Z2) = E[ZT
1 Z2] = �vT1 �v2λ1 = 0. In other words, the vectors

of coefficients are orthogonal. Using again the method of Lagrange multipliers, but

now with two constraints (normality of �v1 and orthogonality between �v1 and �v2) and,
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CHAPTER 2. BLIND SIGNAL SEPARATION

therefore, two multipliers λ2 and λ3 we have

�∇2f = 2ΣX�v2 = λ2
�∇2g + λ3

�∇2h = 2λ2�v2 + λ3�v1.

Taking the dot product with respect to �vT1 from the left, we can see that λ3 = 0.

This implies that

ΣX�v2 = λ2�v2,

and, again, �v2 is an eigenvector of ΣX , where λ2 is the corresponding eigenvalue. We

can repeat this process N times to find that the i-th coefficient vector is given by

the i-th eigenvector of the covariance matrix ΣX . Because of this, one way to obtain

the desired linear transformation V that takes the vector �X and transforms it to the

new random vector �Z of uncorrelated random variables can be obtained by finding

the eigenvectors of the covariance matrix of �X, and letting each eigenvector be a row

of V (note that, because of this, V is orthogonal). This can be efficiently done for

any sample covariance matrix via a Singular Value Decomposition (SVD) algorithm,

which, for our case (real signals) will lead to the SVD decomposition ΣX = EDET ,

where E is a matrix that contains the eigenvectors in the columns andD is a diagonal

matrix with the corresponding eigenvalues. Note that the transformation that we

found, V = ET , gives the following covariance matrix for �Z:

E
�
�Z �ZT

�
= ETE

�
�X �XT

�
E = ETEDETE = D. (2.1)

2.1.2 Interpretation of the Principal Components

Perhaps the most important feature of the principal components is that their

respective eigenvalues give information about which principal component has the

largest variance. The higher the eigenvalue, the higher the variance. This can be

observed from equation (2.1), where for a given principal component, the variance is

given by

E
�
ZiZ

T
i

�
= E

�
�vTi �X �XT�vi

�
= �vTi ΣX�vi = λi.

The importance of this is given because the direction of the vector of coefficients

that define each principal component, �vi, define directions of maximum dispersion.

Consider, for example, the random variables X ∼ N(0, 1), Z ∼ N(0, 1/2) and

Y = X + Z. For the random vector �X = (X, Y )T , it is straightforward to check
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Figure 2.1: Samples of the random variables X and Y in the example.

that the eigenvalues of the covariance matrix are λ1 = 2.3 and λ2 = 0.2, where the

corresponding eigenvectors are �v1 = (−0.6,−0.8)T and �v2 = (−0.8, 0.6)T . 20 samples

of the random variables X and Y where taken and the values obtained are shown in

Figure 2.1. The direction of the eigenvectors is also plotted.

As we derived, the direction of �v1 has maximum dispersion. However, note that

the direction of the eigenvectors seem to form the “principal axes of the data”,

which is actually a property of the coefficient vectors. Jolliffe (2002) sumarizes a

large number of properties and ways in which the principal components and their

corresponding vectors of coefficients (the eigenvectors of the covariance matrix) can

be interpreted. Perhaps the most important property is dimensionality reduction:

the fact that the N principal components, Zi, can be reduced to q < N principal

components in order to minimize the sum of the squared perpendicular distances of
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CHAPTER 2. BLIND SIGNAL SEPARATION

the samples measured from this subspace (the sum of the squared perpendicular dis-

tance from the lines formed by the eigenvectors in Figure 2.1 to the samples). This

is extremely useful when we are dealing with high dimensional random vectors: it

means that we can apply our derived linear transformation to the random vector �X,

obtain the principal components, select the ones that explain most of the variation

on our data and analyse that sub-set of the data with minimum loss of information.

How can we interpret all this in the time series context? As we showed in Chapter

1, time series analysis is way more complex than just talking about random variables,

because a process is a collection of random variables and, therefore, the probabilistic

nature of it is changing with time. Unfortunately, PCA can’t take into account this

fact because we don’t have enough information about the different random variables

at each time index. This may seem rather dissapointing but, as will be shown, it is

a good starting point in the analysis of time series.

The idea in applying PCA to indexed series is that, in practice, we may collapse

a given process into a single random variable and at the same time see this random

variable as a sum of other different random variables (which in the context of time

series were also different processes). For example, the logarithm of the flux of a star

as measured from an instrument may be thought as a random variable which is the

sum of different atmospheric and instrumental effects (thinking that those effects

multiplicatively modulate the emmited flux from the star). This makes sense if we

think in the distributions of these random variables: different processes may produce

different distributions when collapsed in a single random variable. To illustrate this

concept, consider the measurement of the logarithm base 10 of the flux of a star

as a function of time, z1(t), plotted in Figure 2.2. Here, the different values can

be thought as being realizations of different random variables Z1(t). On the other

hand, observing the frequency distribution of the star’s flux, it can also be thought

as realizations of a single random variable. Therefore, this frequency distribution

can also be thought as our measurement of the distribution of the collapsed process,

thinking of it as the measurement of the distribution of a single random variable.

A related subject of this kind of analysis is Functional Data Analysis, a concept

that was introduced by Ramsay and Silverman (1997), which uses PCA in the con-

text of continuous deterministic series, i.e., they assume that the data is a sample
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Figure 2.2: (Left) Light curve of a star (logarithm in base 10 of the measured stellar
flux). (Right) Frequency distribution of the values of the logarithm’s stellar flux.

of some continuous function of some index (e.g. time). In this context, they ar-

gue that if we take independent measures of some variables (e.g. curves of human

growth, econometric time series, etc.) what PCA actually does is to decompose each

observation into a suitable orthonormal basis (the coefficients) whose (uncorrelated)

coefficients are the principal components. In this sense, the principal components

show special features of the data, which has very good results in a wide variety of

areas (Ramsay and Silverman, 2002).

To see how this applies to our collapsed processes, consider the random vector
�X = (X1, X2, ..., XN)

T , where this time the random variables may represent the

different outcomes of N stochastic processes Xi(t), i = 1, 2, ..., N , collapsed in them,

e.g., the logarithm of the fluxes of different stars measured from an instrument (where

now the PDF of each random variable has to be thought of as “the probability density

of obtaning a given value for the flux”). Applying the linear transformation V, recall

that the i-th principal component is given by

Zi =
N�

j=1

vi,jXj.

Because the linear transformation V is orthonormal, V−1 = VT and the i-th random

variable can be written as

Xi =
N�

j=1

vj,iZj.
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This is almost what we where searching for! The above expresion can be thought as

an expansion of the random variable Xi in terms of an orthonormal basis (the vectors

of coefficients) and coefficients given by another (uncorrelated) random variable (the

principal components). In the limit N → ∞, this is known as the Karhunen-Loève

theorem or expansion, which states that a random variable can be represented as

an infinite linear combination of orthogonoal functions, whose coefficients are un-

correlated random variables. Because in our case we have a limited set of samples

for each random variable, PCA may be seen as a truncated form of this expansion,

which is known in the signal proccesing jargon as the Karhunen-Loève transform.

Note that this transform is somewhat different from the usual transforms: here the

coefficients are the random variables and the deterministic vectors contained

in the linear transformation V are the functions.

In practice what we actually have are samples of the random variables, xi(t)

(the different time series for each star), which are collected in order to create a

data matrix, X, where each row represents a different star and each column is a

time index. Then, after subtracting the mean from each row we create the sample

covariance matrix where the element (i, j) of that matrix is

Σ̂X(i, j) =
1

M

M�

t=1

xi(t)xj(t),

where xi(t) is the i-th star’s time series and M is the number of samples. Once we

obtain the sample covariance matrix Σ̂X , we obtain its eigenvalues and eigenvectors

and obtain the linear transformation V. Finally, we apply this transformation to

our data matrix X to obtain

VX = Z,

where the i-th row of the matrix Z is the corresponding time series for the i-th prin-

cipal component. In summary, what this really means is that we can find projections

of the samples where the resulting time series are uncorrelated from each other.

The interesting interpretation about PCA in the time series context is, then, that

the principal components define a set of uncorrelated signals that best explain our

data when properly weighted by the coefficient vector. Furthermore, the eigenvalues

asociated with each principal component are a measure of “how important” is a given
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principal component time series in order to explain our observed data. However, note

that the obtained expansion is given in terms of uncorrelated random variables... is

it possible to make an analogous expansion using independent random variables

(which was what we wanted in the first place)? This question will be answered in

the next section.

2.1.3 PCA and Whitening

We end this section with a discussion in a subject that will be of fundamental

importance on the next section, which is the “whitening” of a random vector. As

was stated in equation 2.1, given our linear transformation V, the new random vec-

tor �Z is uncorrelated but it is not white (i.e. their random variables have different

variances). This is desirable because, as we’ll see in future sections, it simplifies a

lot of calculations and interpretations of the random variables. In this sense, a white

random vector is “better” than an uncorrelated random vector.

It easy to show that a transformation that can project the initial random vector
�X to a white random vector �Z is given by V = D−1/2ET , because

E
�
�Z �ZT

�
= D−1/2ETE

�
�X �XT

�
ED−1/2 = I.

This is called a whitening transform, for obvious reasons. It is interesting to

note, however, that in fact any transformation of the form V = PD−1/2ET , where

P is an orthogonal matrix will make a whitening transform. In order to simplify the

notation, we’ll use the transform Σ
−1/2
X = ED−1/2ET , which is widely used in the

signal processing literature.

2.2 Independent Component Analysis

In the past section we saw that PCA is a powerful analysis tool, because it can

decompose a given random variable into a series of uncorrelated random variables,

properly weighted by an orthonormal basis. However, recall that, as we showed on

Chapter 1, uncorrelated does not mean independent, so the components obtained

with PCA may still be dependent of each other. With this in mind we posed the

following question: if there exists a decomposition of a random variable in terms
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