The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers+

By A.N. KoLM0OGOROV

§1. We shall denote by

U (P> = ua(xpxz:xg’t)) a = 1; 2; 3;

a

the components of velocity at the moment ¢ at the point with rectangular cartesian
coordinates x,,2,,x;. In considering the turbulence it is natural to assume the
components of the velocity u,(P) at every point P = (x,, x,, z3,t) of the considered
domain @ of the four-dimensional space (x,, z,, x,, t) are random variables in the sense
of the theory of probabilities (cf. for this approach to the problem Millionshtchikov
(1939)).

Denoting by 4 the mathematical expectation of the random variable A we suppose
that
w, and (du,/dz,)?

[e4

are finite and bounded in every bounded subdomain of the domain G.
Introduce in the four-dimensional space (z,, z,, %3, t) new coordinates

Y, = xa”x;O)—uoc(P(O)) (t_t(O))a} (1)

s =1t—1t0,
where PO = (20 30 2® 1)

is a certain fixed point from the domain . Observe that the coordinates y, of any
point P depend on the random variables u,(P®) and hence are themselves random
variables. The velocity components in the new coordinates are

wy(P) = u,(P) —u,(P?). (2)

Suppose that for some fixed values of u,(P®) the points P® k= 1,2,...,n, having
the coordinates y® and s® in the coordinate system (1), are situated in the domain
(. Then we may define a 3n-dimensional distribution law of probabilities #, for the
quantities

w® = (P®), a=1,2,3; k=12,...,n,

where ul® = u, (P©)

are given. :
Generally speaking, the distribution law F, depends on the parameters x(?, t©, u(?,
(k) o)
Yo s®

Definition 1. The turbulence is called locally homogeneous in the domain G, if for
every fized n, y® and s®, the distribution law F, is independent from ¥, t© and u(”
as long as all points P are situated in G.

+ First published in Russian in Dokl. Akad. Nauk SSSR (1941) 30(4). Paper received 28 December 1940. This
translation by V. Levin, reprinted here with emendations by the editors of this volume.
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10 A. N. Kolmogorov

Definition 2. The turbulence is called locally isotropic in the domain G, if it is
homogeneous and if, besides, the distribution laws mentioned in Definition 1 are
invariant with respect to rotations and reflections of the original system of coordinate axes

(), Xy, X3).

In comparison with the notion of isotropic turbulence introduced by Taylor (1935)
our definition of locally isotropic turbulence is narrower in the sense that in our
definition we demand the independence of the distribution law F, from @, i.e.
steadiness in time, and is wider in the sense that restrictions are imposed only on the
distribution laws of differences of velocities and not on the velocities themselves.

§2. The hypothesis of isotropy in the sense of Taylor is experimentally quite well
confirmed in the case of turbulence caused by passing of a flow through a grid (cf. (3)).
In the majority of other cases interesting from the practical point of view it may be
considered only as a rather far approximation of reality even for small domains ¢ and
very large Reynolds numbers.

On the other hand we think it rather likely that in an arbitrary turbulent flow with
a sufficiently large Reynolds numbery

R=LU/v

the hypothesis of local isotropy is realized with good approximation in sufficiently
small domains G of the four-dimensional space (z,,,,%,,t) not lying near the
boundary of the flow or its other singularities. By a ‘small domain’ we mean here a
domain, whose linear dimensions are small in comparison with L and time
dimensions — in comparison with

T = U/L.

It is natural that in so general and somewhat indefinite a formulation the just
advanced proposition cannot be rigorously proved.i In order to make its ex-

1 Here L and U denote the typical length and velocity for the flow in the whole.

1 We may indicate here only certain general considerations speaking for the advanced hypothesis. For very
large R the turbulent flow may be thought of in the following way : on the averaged flow (characterized by the
mathematical expectations #,) are superposed the ‘pulsations of the first order’ consisting in disorderly
displacements of separate fluid volumes, one with respect to another, of diameters of the order of magnitude
1V = | (where [ is the Prandtl’s mixing path); the order of magnitude of velocities of these relative velocities
we denote by v, The pulsations of the first order are for very large R in their turn unsteady, and on them are
superposed the pulsations of the second order with mixing path I® < I and relative velocities v® < »V; such
a process of successive refinement of turbulent pulsations may be carried until for the pulsations of some

sufficiently large order » the Reynolds number
RM = [y /y,

becomes so small that the effect of viscosity on the pulsations of the order » finally prevents the formation of
pulsations of the order n+1.

From the energetical point of view it is natural to imagine the process of turbulent mixing in the following
way : the pulsations of the first order absorb the energy of the motion and pass it over successively to pulsations
of higher orders. The energy of the finest pulsations is dispersed in the energy of heat due to viscosity.

In virtue of the chaotical mechanisms of the translation of motion from the pulsations of lower orders to the
pulsations of higher orders, it is natural to assume that in domains of the space, whose dimensions are small
in comparison with I, the fine pulsations of the higher orders are subjected to approximately space-isotropic
statistical régime. Within small time-intervals it is natural to consider this régime approximately steady even
in the case, when the flow in the whole is not steady.

Since for very large R the differences

wa(P) = ua(P)_uu(P(O))
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Incompressible viscous fluid for very large Reynolds numbers 11

perimental verification possible in particular cases we indicate here a number of
consequences of the hypothesis of local isotropy.

§3. Denoting by y the vector with components y,, ¥,, ¥;, we consider the random
variables

WY) = W (Y15 Ygs Ys) = U (T + Y1, Ty H Y, X3+ Y3, t) — U, (X4, Xy, X3, F). (3)

In virtue of the assumed local isotropy their distribution laws are independent from
X, %4, 2y and ¢. From the first moments of the quantities w,(y) it follows from the local
isotropy that

w,(y) = 0. (4)
We proceed therefore to the consideration of the second momentsf
By, y®) = w,(yP)wy(y®)- (5)

From the local isotropy follows that
Bosy®, y®) = 5B,y ™, y®) + Boply®, y ) = Byly® —y ¥, y® —y)].  (6)

In virtue of this formula we may confine ourselves to the second moments of the form

B,4(y,y). For them _
B4y, y) = B(r) cos 0, cos 05+0,5B,,(7), (7)

where
P =yit+yit+yl y,=rcosl, 0,=0 for a#p, d,=1 for a=p,
B(r) = By(r)—B,,(r), (8)
Bya(r) = [w,(r,0,0) 1%, |
Buu(r) = [105(r, 0,0)*. )
For r = 0 we have

_ 9, _ 9

0? _of0w )},
éﬁde(O) = 2(6&:) = 2a y
(11)
02 o [0wE
—a—ﬁBm(O) = Q(ayl) = 2a;.

The formulae (6)—(11) were obtained without use of the assumption of
incompressibility of the fluid. From this assumption follows the equation

rdBg,/0r = —2B, (12)
enabling us to express B, through B,,. From (12) and (11) follows that
a? = 2a®. (13)

of the velocity components in neighbouring points P and P©® of the four-dimensional space (z;, 2y, %3,t) are
determined nearly exclusively by pulsations of higher orders, the scheme just exposed leads us to the hypothesis
of local isotropy in small domains G in the sense of Definitions 1 and 2.

+ All results of §3 are quite similar to that obtained in (1), (2) and (4) for the case of isotropic turbulence
in the sense of Taylor.
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It is, further, easy to calculate that (assuming the incompressibility) the average
dispersion of energy in unit of time per unit of mass is equal to

Qw, Qw, ow. )\ [Ow, ow,\?
€=vi2 —1) +2( ) +2( 3) +(—2+—1)
{ (6?/1 Y3 Y qyy Y,

2 2
+(6w3+6w2) +(aw1+6w3) } v, (14)

Y, 0y, dys Oy,
§4. Consider the transformation of coordinates
Yo = Yal 0, 8 =8/0. (15)

The velocities, the kinematical viscosity and the average dispersion of energy are
expressed in the new system of coordinates by the following formulae:

w, =w,c/y, Vv =vo/y?, & =éo?/y> (16)
We introduce now the following hypothesis.

The first hypothesis of similarity. For the locally isotropic turbulence the
distributions F, are uniquely determined by the quantities v and €.

The transformation of coordinates (15) leads for
7 =2A=1+/(v/a) = vi/éi (17)
and o=1/a=1+/(v/€) (18)

to the quantities v' =1, & = 1.
In virtue of the accepted hypothesis of similarity the corresponding function

Baa(r') = Baalr’ (19)
must be the same for all cases of locally 1sotropie turbulence. The formula
Ba(r) = v/ (v€) Baalr/A) (20)

shows in combination with the already deduced that in the case of locally isotropic
turbulence the second moments B, ,(y", y®) are uniquely expressed through v, € and
the universal function £,,.

§5. To determine the behaviour of the function f,,(r") for large +* we introduce
another hypothesis.

The second hypothesis of similarity.t If the moduli of the vectors y® and of their
differences y® —y*) (where k # k') are large in comparison with A, then the distribution
laws F, are uniquely determined by the quantity é and do not depend on v.

but vi= R, 8 =8 R 21)
where y, and s” are determined in accordance with the formulae (15), (17) and (18).

Since for every k € = & = 1, for v’ large in comparison with A’ = 1 we have in virtue
of the accepted hypothesis

Y4 ” ’ // 3
Baa(r”) ~ Baa(r”) = Baa(r’ [ 5?).

1 In terms of the schematical representation of turbulence developed in the footnote I, A is the scale of the
finest pulsations, whose energy is directly dispersed into heat energy due to viscosity. The sense of the second
hypothesis of similarity consists in that the mechanism of translation of energy from larger pulsations to the
finer ones is for pulsations of intermediate orders, for which I is large in comparison with A, independent from
viscosity.
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Incompressible viscous fluid for very large Reynolds numbers 13
On the other hand, from the formula (20) follows that
Ba(r") = kBa(r') = kf4(r").
Thus for large Baar’ JE3) ~ E728,,(r),
whence Baalr’) ~ C(r' ), (22)
where C is an absolute constant. In virtue of (17), (20) and (22) we have for r large

in comparison with A

2

B, (r) ~ Cesrs. (23)
From (23) and (12) it is easy to deduce that for r large in comparison with A
Bin(r) ~ §Baqa(r). (24)

As regards the last formula, observe that for » small in comparison with A in virtue
of (13) holds the relation

Bnn(r) ~ Zde(T)' (25)
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