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On the Scattering of Light by Spherical Shells, and by Complete
Spheres of Periodic Structure, when the Refractivity vs Small.
By Lorp RavrEicH, O.M., F.R.S.

(Received January 28, 1918.)

The problem of a small sphere of uniform optical quality has been treated
in several papers.* In general, the calculations can be carried to an
arithmetical conclusion only when the circumference of the sphere does not
exceed a few wave-lengths. But when the relative refractivity is small
enough, this restriction can be dispensed with, and a general result
formulated.

In the present paper some former results are quoted, but the investigation
is now by an improved method. It commences with the case of an infinitely
thin spherical shell, from which the result for the complete uniform sphere
is derived by integration. Afterwards application is made to a complete
sphere, of which the structure is symmetrical but periodically variable along
the radius, a problem of interest in connection with the colours, changing
with the angle, often met with in the organic world.

The Speolfic inductive capacity of the general medinum being umty, that of
the sphere of radius R is supposed to be K, where K —1 is very small.
Electric displacements being denoted by f, ¢, %, the primary wave is taken
to be |

o = eint g, : (1)
so that the direction of propagation is along x (negatively), and that of
vibration parallel to z. The electric displacements in the scattered wave, so
far as they depend upon the first power of (K—1), have at a great distance
the values

4 , k2P [ary By a®+ 32 )
in which P = —(K—1). " |ff e dudydz. (3)

In these equations # denotes the distance between the point (&, 3, ¥),
where the disturbance is to be estimated, and the element of volume (dz dy dz)
of the obstacle. The centre of the sphere R will be taken as the origin of
co-ordinates. It is evident that, so far as the secondary ray is concerned, P

* ¢Phil. Mag.,” vol. 41, pp. 107, 274, 447 (1871) ; vol. 12, p. 81 (1881); vol. 47, p. 375
(1889) ; ‘Roy. Soc. Proc.,” A, vol. 84, p. 25 (1910); vol. 90, p. 219 (1914); *Scientific

Papers,” vol. 1, pp. 87, 104, 518 ; vol. 4, p. 397 vol. 5, p. 547 ; vol. 6, p. 220 (not yet
published).
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depends only on the angle () which this vay makes with the primary ray.
‘We will suppose that ¥ = 0 in the direction backwards along the primary
ray, and that ¥ = 7 along the primary ray continued. The integral in (3)-
may then be found in the form

Q2 R2e ke pin R ) »
R 2y COS 5 . N ' { ’ 4: *
Jecos Ly jo J1(2k1 cos iy cos ) cos? ¢ dp (4)

p denoting the distance of the point of observation from the centre of the
sphere. In the paper of 1914 I showed that the integral in (4) can be
simply expressed by circular functions in virtue of a theorem given by
Hobson, so that

P=—(K—1).4nR? aﬂnt—w)(iiﬂ-—?os m) (5)

m? m? )’
where m = 2R cos L. : (6)

In (5) the optical quality of the sphere, expressed by (K—1), is supposed
to be uniform throughout. In view of an application presently to be con-
sidered, it was desired to obtain the expression for a spherical shell of
infinitesimal thickness dR, from which could be derived the value of P for a
complete symmetrical sphere whose optical quality varies along the radius.
The required result is obtained at once from (5) and (6) by differentiation.
We find

dP = —(K—1) . 47R2dR . ¢®=F) | sin m [, (7)

expressing the value of P for a spherical shell of volume 47R?dR. The
simplicity of (7) suggested that the reasoning by which it had been arrived
at is needlessly indirect, and that a better procedure would be an inverse one,
in which (7) was established first, and the result for the complete sphere
derived from it by integration. And this anticipation was easily confirmed.

Commencing then with a spherical shell of centre O and radius OA equal
to R, let 2O be the direction of the primary and Op that of the secondary
ray (fig. 1). Draw O¢in the plane of Oz, Op, and bisecting the angle between
these lines and let & be a co-ordinate measured from O in the direction OE, s
that the plane AOA, perpendicular to O¢, is represented by ¢ = 0. " The angle
208 is %y, as in our former notation. We have now to consider the phases:
represented by the factor ¢*@=7 in P.  For the point O,z = 0, 7 = p,and the
exponential factor is ¢="*.  As in the ordinary theory of specular reflection,
the same is ‘true for every point in the plane AOA and therefore for the
element of surface at AA whose volume is 2rRARdE  For points in a plane

* Given in the 1881 paper.
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BB parallel to AA at a distance ¢ the linear retardation is —2&cos iy, as v
the theory of thin plates; and the expounential factor is ¢='e plikgeosix. The

elementary volume at BB is still expressed by 27RARAE and accordingly
by (3

p— - - - s y ’ +¥z P AR ‘
AP = —(K—1) . 2xRdR . » “"""“"WJ A& ePihseos i, (8)

-R

The integral in (8) is 2R sinn /m, m being g‘ivenby (63, and we recover (7)
as expressing the value of 4P for a spherical shell of volume 4nR*dR.

The value of AP for a spherical shell having been wow obtained inde-
pendently, we can pass ab once by integration to the corresponding expression
tor a complete sphere of uniform optical quality, thus recovering (5) by &
simpler method not involving Bessel’s functions at all. Anda comparison of
the two processes affords a demonstration of Hobson’s theorem formerly
employed as a stepping stone.

When P is known, the secondary vibration is given by (2), in which we
may replace » by p. So far as it depends upon P, the angular distribution,
being a funetion of y, is symmetrical round Oz, the direction of primary
propagation.  So far as it depends on the other factors ay/p® ete., it is the
same as for an infinitely small sphere; in particular no ray is emitted in the
direction defined by « = 8 = 0, that is in the direction of primary vibration.-
There is no limitation upon the value of R if (K—1)be small enough ; but the
reservation is important, since it is necessary that at every point of the
obstacle the retardation of the primary waves due to the obstacle he negligible.

When R is great compared with A (= 27 /), m usually varies rapidly with
R or /:, and so does P, as given for the complete uniform sphere in (5). An
exception occurs when y is nearly equal to 7, that is when the secondary ray
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is nearly in the direction of the primary ray continued (8 =y = 0). In this
case m 1s very small,
sinoe cosam 1

— e

m? 2 3’

and || is independent of %, and is proportional to R3  The infensity is then

16 (K —1)2 72RS -

| P2 =

The haze immediately surrounding a small source of light seen through a
foggy medium is of relatively great intensity. And the cause is simply
that the contributions from the various parts of a small obstacle agree in
phase.

But in general when R is great, so also is s, and |P| varies rapidly aund
periodically with % along the spectrum.  We might then be concerned mainly
with the mean value of |P?]. Now

[ P2 = (K~ 1) . 4*72RE (sin ne —m cos m )2~ °,
of which the mean value is _
(K=1)2 . 872RY (1 +m?) ",
or approximately, since m is great,
(K1) . 872RSm 4

When we introduce the value of w from (6), this becomes

Mean | P?| = (K—1)272R? _ (K—1)ZR"\*
sWwie ) — e ; .
’ 2kt costd y 3277 cost §y

(10

The occwrrence of A' shows that this is in general very small in comparison
with (9).

I, instead of a sphere of uniform quality, we have to deal with one wheve
(K—1) is variable, we must employ (7). The case of greatest intcrest is
when (K—1), besides a constant, includes also a periodic part. For the
constant, part the integration proceeds as before, and for the periodic part,
where (K—1) varies as a civcular function of R, it presents no difficulty. It
may suffice to consider the particular case where (KX —1) is proportional
to sin me, 7 as before being given by (6); for this supposition evidently leads
to a large augmentation of I’, analogous to what occurs in crystals of chlorate
of potash, to which a plane periodic structure is attributed.* 1t will be

* ¢ Phil. Mag.,’ vol. 26, p. 256 (1888) ; * Scientific Papers,’ vol, 3, p. 204.
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observed that. the wave-length of the structiwre now supposed varies with
x> as well as with £ orn. Thus, if K—1 = B,

P = — @i RS A —in sin 2m + 5 (1 —cos 2m) (11)
m? ’ )
when the integration is taken for a complete sphere of radins R. [If m 1s
moderately great, that is, if R be a large multiple of A, the first term on the
right of (11) preponderates, and we may use approximately

R2 g (i) N
p = TRRTT 12
2kcos sy (12)
Thus, if (K—1) has no constaut part,

n2 >z

2kkcosx  deosty

The relation between the wave-length of the structure (A) and that of the
light is expressed by
A= INfeosky. (14)

1t seems probable that a structure of this sort is the cause of the remark-
able colours, variable with the angle of observation, which are so frequent
in beetles, butterflies, and feathers.




